记录下机器学习过程中的知识点,以便以后复习使用。
以下知识来自周莫烦老师的《有趣的机器学习》视频
机器学习分类:
- 监督学习 (有数据和标签)
- 非监督学习(只有数据没有标签)
- 半监督学习 (结合监督学习和非监督学习)
- 强化学习 (从经验中总结和提升)
- 遗传算法 (适者生存,不适者淘汰)
什么是神经网络 (机器学习)
神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模。
神经网络由大量的节点和之间的联系构成,负责传递信息和加工信息,神经元也可以通过训练而被强化。
神经网络是如何被训练的,首先它需要很多数据。比如他要判断一张图片是不是猫。就要输入上千万张的带有标签的猫猫狗狗的图片,然后再训练上千万次。
神经网络训练的结果有对的也有错的,如果是错误的结果,将被当做非常宝贵的经验,那么是如何从经验中学习的呢?就是对比正确答案和错误答案之间的区别,然后把这个区别反向的传递回去,对每个相应的神经元进行一点点的改变。那么下一次在训练的时候就可以用已经改进一点点的神经元去得到稍微准确一点的结果。
神经网络是如何训练的呢?每个神经元都有属于它的激活函数,用这些函数给计算机一个刺激行为。
卷积神经网络的简单介绍
卷积神经网络是近些年逐步兴起的一种人工神经网络结构, 因为利用卷积神经网络在图像和语音识别方面能够给出更优预测结果, 这一种技术也被广泛的传播可应用. 卷积神经网络最常被应用的方面是计算机的图像识别, 不过因为不断地创新, 它也被应用在视频分析, 自然语言处理, 药物发现, 等等. 近期最火的 Alpha Go, 让计算机看懂围棋, 同样也是有运用到这门技术.
- Updated on 2017-04-10